≡ Menu

Jochen Hirschle – Machine Learning für Zeitreihen

12,11 MB – epub

Beschreibung:

– Konzepte Schritt für Schritt erklärt. Anleitungen zur Umsetzung in Python mit ausführlichen Code-Kommentaren.
– Die Eigenarten von Zeitreihendaten verstehen: Zeitfenster zum Anlernen einsetzen; mit latenten, saisonalen und Trend-Komponenten arbeiten
– Mit TensorFlow2 Deep-Learning-Verfahren zur Prognose aufbauen, anlernen und produktiv einsetzen

Daten über Vorgänge werden in der verarbeitenden Industrie, der Logistik oder im Finanzsektor im Sekundentakt aufgezeichnet: der Verlauf eines Aktienkurses, die Verkaufszahlen eines Produkts, die Sensordaten einer Turbine. Solche Daten informieren nicht nur über isolierte Zustände; sie sind wie Filme, die den Verlauf eines Vorgangs mit einer Serie einzelner Bilder nachzeichnen. Intelligente Algorithmen können die Muster dieser Verläufe analysieren, sie anlernen und über das Beobachtungsfenster hinaus fortschreiben: Zustände in der Zukunft werden prognostizierbar.
Das Buch bietet eine leicht verständliche Einführung in die Konzepte und die Praxis der Zeitreihenanalyse. Es zeigt, wie bewährte und neuere Lernalgorithmen arbeiten und wie sie sich mit Python anlernen und produktiv einsetzen lassen.
An einer Vielzahl von Anwendungsbeispielen werden die Vorbereitung der Daten, der Anlern- und Schätzprozess Schritt für Schritt erklärt.

Vorkenntnisse in Machine-Learning-Verfahren sind nicht notwendig. Grundlegende Statistik- und Python-Kenntnisse sollten vorhanden sein.

Mirrors zeigen

  oboom.com share-online.biz rapidgator

{ 0 comments… add one }

Leave a Comment